

Instrukcja obsługi i instalacji R470 one / R470p / R470n

do wersji programu u5.x, wydanie 3, 2017-05-26

REGULATOR POMPY CIEPŁA POWIETRZNEJ LUB GRUNTOWEJ

Spis treści

1 Opis regulatora	4
1.1 Przykładowe schematy obsługiwanych instalacji	6
2 Obsługa regulatora	13
2.1 Panel R470 one - znaczenie klawiszy	13
2.2 Panel R470p - znaczenie klawiszy	14
2.3 R470N - znaczenie klawiszy	15
2.4 Ekran główny	16
2.4.1 Konfiguracja bez bufora	16
2.4.2 Konfiguracja z buforem	17
2.4.3 Konfiguracja z dołączaniem kotła pomocniczego	17
2.5 Ustawianie temperatury zadanej pompy ciepła / bufora	18
2.6 Wykres zmian temperatury zewnętrznej	18
2.7 Mieszacz 1 - ekran i ustawianie	19
2.8 Mieszacz 2 - ekran i ustawianie	19
2.9 Ekran CWU	20
2.9.1 Ustawianie temperatury zadanej CWU	20
3 Menu	21
3.1 Off/auto/eko	22
3.2 Zima/Lato/Chłodzenie	22
3.3 Ogrzewanie	22
3.3.1 Praca C.O	22
3.3.2 Obniżenie C.O	22
3.3.3 Wyłącz. Termostatem	23
3.3.4 Praca pogodowa C.O	23
3.3.5 Charakterystyka pog	23
3.3.6 Harmonogram.	23
3.4 CWU	23
3.4.1 Tryb pracy	23
3.4.2 Obniżenie	23
3.4.3 Harmonogram	23
3.4.4 Cyrkulacja	24
3.4.4.1 Tryb pracy	24
3.4.4.2 Czas pracy	24
3.4.4.3 Czas przerwy	24
3.5 Mieszacz 1	24
3.5.1 Praca mieszacza	24
3.5.2 Wyłacz. termostatem	25
3.5.3 Praca pogodowa	25
3.5.4 Charakterystyka pogodowa.	
3.5.5 Harmonogram	25
3.6 Mieszacz 2	25
3.7 Ustawienia	25
3.7.1 Data i czas	25
3.7.2 Svgnał awarii	25
3.7.3 Svgnat klawiatury	25
3.7.4 Kontrast	
3 8 SERWIS	26
3.9 TFST	28
3 10 Rejestr zdarzeń	28
3 11 l iczniki	28
3 12 l iczniki SPR	28
4 Działanie regulatora	20
4 1 Sterowanie praca pompy cienła	
4.2 Sterowanie pompa C.O. (nompa górnego źródła)	,. 27
4.2 1 MENII / Serwis / Objeg ogrzewania = PODł OGA	₹ <u>۲</u>
4.2.1 MENO / Serwis / Objeg ogrzewania - I OblogA	⊃0

4.2.3 MENU / Serwis / Obieg ogrzewania = GRZEJNIKI	
4.3 Praca pogodowa	
5 Montaż i instalacja	
5.1 Informacje ogólne	
5.2 Czujniki i ich montaż	
5.3 Moduł wykonawczy R470 E8	
5.4 Panel sterujący R470p	
5.5 Panel sterujący R470 one	
5.6 Panel sterujący R470n	
5.7 Moduł rozszerzający H2	
5.7.1 Schemat wyprowadzeń	
5.7.2 Znaczenie kontrolek	
5.7.3 Konfiguracja	
5.8 Moduł mieszacza R803BB	
5.8.1 Schemat podłączenia	
5.8.2 Konfiguracja regulatora do współpracy z R803BB	
5.9 Podłączenie NANO one	
6 Dane techniczne	

1 Opis regulatora

Regulator pompy ciepła **R470** jest nowoczesnym urządzeniem przeznaczonym do sterowania powietrzną lub gruntową pompą ciepła, cechującym się przejrzystym interfejsem użytkownika z wyświetlaczem graficznym, intuicyjną i łatwą obsługą, wysoką niezawodnością i jakością wykonania. Regulator steruje pracą sprężarki, pomp obiegowych, 2 mieszaczy oraz biwalentnych źródeł ciepła np: grzałek, lub kotłów. Obsługuje instalację ciepłej wody użytkowej (CWU) wraz z pompą cyrkulacyjną (sterowanie pompą cyrkulacyjną wymaga zastosowania modułu R803BB, lub modułu MC-1). Można go zastosować do instalacji zarówno z buforem jak i bez bufora. Obsługuje dwa obiegi grzewcze (CO) wyposażone w zawory mieszające i pompy. Każdy obieg grzewczy wymaga zastosowania modułu rozszerzającego R803BB.

- Realizowane✓Sterowanie powietrzną lub gruntową pompą ciepła zapewniającefunkcje:właściwe sekwencje uruchamiania i zatrzymywania poszczególnych
urządzeń:
 - sprężarka
 - pompa dolnego źródła / wentylator
 - zawór rozmrażania
 - pompa górnego źródła
 - zawór rozdzielający CO/CWU
 - biwalentne źródło ciepła dla obiegu głównego
 - biwalentne źródło ciepła dla obiegu CWU
 - Współpraca z buforem regulator jest przygotowany do sterowania instalacjami wyposażonymi w bufor CO.
 - Sterowanie rozmrażaniem parownika regulator sterując powietrzną pompą ciepła przeprowadza cykle rozmrażania, także z wykorzystaniem odwrócenia obiegu freonowego.
 - Wbudowany zegar pozwalający na dobowe sterowanie obniżeniami temperatur w obiegach, co wpływa na oszczędniejsze ogrzewanie (np praca w drugiej taryfie).
 - Sterowanie zaworem mieszającym regulator za pomocą dodatkowych modułów R803BB ma możliwość sterowania 2 obiegami z zaworem mieszającym.
 - Sterowanie ładowaniem zasobnika CWU regulator automatycznie utrzymuje temperaturę zasobnika ciepłej wody użytkowej na zadanym przez użytkownika poziomie.

- Priorytet ładowania CWU funkcja pozwala na szybsze podgrzanie zasobnika CWU.
- Sterowanie pompą cyrkulacyjną CWU pozwala zaoszczędzić energie załączając pompę cyrkulacyjną tylko w zaprogramowanych godzinach (funkcja wymaga zastosowania modułu pompy cyrkulacyjnej MPC lub R803BB).
- ✓ Funkcja ANTY-LEGIONELLA pozwala na steryzlizację zbiornika CWU.
- Współpraca z termostatem pokojowym praca z termostatem zwiększa ekonomikę użytkowania kotła, chroni dom przed zbyt wysoką temperaturą a poprzez wyłączanie pompy CO ogranicza zużycie energii elektrycznej.
- Obsługa protokołu C14 umożliwia wymianę informacji pomiędzy wieloma urządzeniami podłączonymi do tej samej sieci, oraz umożliwia podłączenie regulatora przez odpowiedni modem do sieci INTERNET.
- Współpraca z NANO PLUS- zaawansowanym panelem odczytowym i sterującym.

Panele NANO - więcej niż termostat!

- Wbudowana funkcjonalność cyfrowego termostatu pokojowego
- Program dobowy i tygodniowy
- Odczyty stanu kotła temperatury i alarmy
- Zdalne programowanie temperatury kotła
- Współpraca z regulatorami mieszaczy, pomp ciepła i solarów pozwalająca na odczyt temperatur i zdalne programowanie podstawowych parametrów
- Automatyczny powrót do pracy po zaniku zasilania po powrocie napięcia regulator wznawia pracę w trybie w jakim znajdował się przed zanikiem zasilania.
- Wybiegi posezonowe pomp (ANTYSTOP) funkcja ochronna zapobiegająca zablokowaniu pomp wskutek odkładania się na nich osadów i zanieczyszczeń.

1.1 Przykładowe schematy obsługiwanych instalacji

Ilustracja 1: Przykładowy schemat instalacji z gruntową pompą ciepła. Parametr MENU/SERWIS/Obieg ogrzewania = GRZEJNIKI, parametr MENU/SERWIS/Układ pracy pomp = ROZDZIELACZ CO/CWU

T.zewn - czujnik temperatury powietrza - zewnętrzny.

T.DZ - czujnik temperatury dolnego źródła.

T.GZ - czujnik temperatury górnego źródła.

T.CWU - czujnik temperatury ciepłej wody użytkowej.

PDZ - pompa dolnego źródła.

PGZ - pompa górnego źródła.

Zawór CO/CWU - zawór rozdzielający CO/CWU.

R803BB - moduł rozszerzający przeznaczony do sterowania obwodem mieszacza.

Ilustracja 2: Przykładowy schemat instalacji z powietrzną pompą ciepła. Parametr MENU/SERWIS/Obieg ogrzewania = GRZEJNIKI, parametr MENU/SERWIS/Układ pracy pomp = ROZDZIELACZ CO/CWU

T.zewn - czujnik temperatury powietrza - zewnętrzny.

T.DZ - czujnik temperatury dolnego źródła.

T.GZ - czujnik temperatury górnego źródła.

T.CWU - czujnik temperatury ciepłej wody użytkowej.

T.freon - czujnik temperatury freonu.

PDZ - wentylator dolnego źródła.

PGZ - pompa górnego źródła.

Zawór CO/CWU - zawór rozdzielający CO/CWU.

R803BB - moduł rozszerzający przeznaczony do sterowania obwodem mieszacza.

Ilustracja 3: Przykładowy schemat instalacji z gruntową pompą ciepła. Parametr MENU/SERWIS/Obieg ogrzewania = BUFOR, parametr MENU/SERWIS/Układ pracy pomp = ROZDZIELACZ CO/CWU

T.zewn - czujnik temperatury powietrza - zewnętrzny.

T.DZ - czujnik temperatury dolnego źródła.

T.GZ - czujnik temperatury górnego źródła.

T.CWU - czujnik temperatury ciepłej wody użytkowej.

T.powr. - czujnik temperatury powrotu.

T.freon - czujnik temperatury freonu.

T.bufora - czujnik temperatury bufora.

PDZ - wentylator dolnego źródła.

PGZ - pompa górnego źródła.

Zawór CO/CWU - zawór rozdzielający CO/CWU.

R803BB - moduł rozszerzający przeznaczony do sterowania obwodem mieszacza.

Ilustracja 4: Przykładowy schemat instalacji z powietrzną pompą ciepła. Obiegi z zaworami mieszającymi są zasilane z bufora. Parametr MENU/SERWIS/Obieg ogrzewania = BUFOR, parametr MENU/SERWIS/Układ pracy pomp = ROZDZIELACZ CO/CWU

T.zewn - czujnik temperatury powietrza - zewnętrzny.

T.DZ - czujnik temperatury dolnego źródła.

T.GZ - czujnik temperatury górnego źródła.

T.CWU - czujnik temperatury ciepłej wody użytkowej.

T.powr. - czujnik temperatury powrotu.

T.freon - czujnik temperatury freonu.

T.bufora - czujnik temperatury bufora.

PDZ - wentylator dolnego źródła.

PGZ - pompa górnego źródła.

Zawór CO/CWU - zawór rozdzielający CO/CWU.

R803BB - moduł rozszerzający przeznaczony do sterowania obwodem mieszacza.

Ilustracja 5: Przykładowy schemat instalacji z gruntową pompa ciepła. Parametr MENU/SERWIS/Obieg ogrzewania = PODŁOGA, parametr MENU/SERWIS/Układ pracy pomp = POMPY CO i CWU

T.zewn - czujnik temperatury powietrza - zewnętrzny.

T.DZ - czujnik temperatury dolnego źródła.

T.GZ - czujnik temperatury górnego źródła.

T.CWU - czujnik temperatury ciepłej wody użytkowej.

T.powr. - czujnik temperatury powrotu.

PDZ - pompa dolnego źródła.

PGZ - pompa górnego źródła.

PCWU - pompa ładująca zasobnik CWU.

Ilustracja 6: Przykładowy schemat instalacji z powietrzną pompą ciepła. Parametr MENU/SERWIS/Obieg ogrzewania = PODŁOGA, parametr MENU/SERWIS/Układ pracy pomp = POMPY CO i CWU.

T.zewn - czujnik temperatury powietrza - zewnętrzny.

T.DZ - czujnik temperatury dolnego źródła.

T.GZ - czujnik temperatury górnego źródła.

T.CWU - czujnik temperatury ciepłej wody użytkowej.

T.powr. - czujnik temperatury powrotu.

T.freon - czujnik temperatury freonu.

PDZ - wentylator dolnego źródła.

PGZ - pompa górnego źródła.

PCWU - pompa ładująca zasobnik CWU.

Ilustracja 7: Przykładowy schemat instalacji z gruntową pompą ciepła z obsługą obiegu chłodzącego. Parametr MENU/SERWIS/Obieg ogrzewania = GRZEJNIKI, parametr MENU/SERWIS/Układ pracy pomp = ZAWÓR CO/CWU.

T.zewn - czujnik temperatury powietrza -	PDZ - pompa dolnego źródła.
zewnętrzny.	PGZ - pompa górnego źródła.
T.DZ - czujnik temperatury dolnego źródła.	PCH - pompa obiegu chłodzenia.
T.GZ - czujnik temperatury górnego źródła.	NANO plus - cyfrowy moduł pokojowy z
T.CWU - czujnik temperatury ciepłej wody	obsługą protokołu C14.
użytkowej.	
T.powr czujnik temperatury powrotu.	

T.freon - czujnik temperatury freonu.

2 Obsługa regulatora

2.1 Panel R470 one - znaczenie klawiszy

(')ESC	Naciśnięcie tego klawisza kiedy wyświetlany jest ekran główny powoduje					
	wyświetlenie MENU. Ponowne naciśnięcie przywraca wyświetlanie ekranu					
	podstawowego.					
	Jeżeli jest edytowany parametr, to naciśnięcie tego klawisza powoduje wyjście					
	z trybu edycji.					
	Jeżeli jest wyświetlane podmenu, to naciśnięcie tego klawisza powoduje powrót do					
	menu.					
	Jeżeli jest wyświetlany ekran informacyjny, to naciśnięcie tego klawisza pododuje					
	wyświetlenie ekranu podstawowego.					
\wedge	Poruszanie się w górę menu. W trybie edycji zwiększanie nastawianej wartości.					
\searrow	Poruszanie się w dół menu. W trybie edycji zmniejszanie nastawianej wartości.					
ENTER	Jeżeli wyświetlany jest ekran podstawowy, to naciśnięcie tego klawisza powoduje					
	przejście w tryb nastawiania temperatury zadanej.					
	Jeżeli wyświetlane jest MENU, to naciśnięcie tego klawisza powoduje przejśćie do					
	podmenu.					
	Jeżeli wyświetlane jest podmenu, to naciśnięcie tego klawisza powoduje przejście					
	w tryb edycji.					

2.2 Panel R470p - znaczenie klawiszy

	Naciśnięcie tego klawisza kiedy wyświetlany jest ekran główny powoduje					
\mathbf{O}	wyświetlenie menu wyboru trybu pracy. Ponowne naciśnięcie przywraca					
-	wyświetlanie ekranu podstawowego.					
	Jeżeli jest edytowany parametr, to naciśnięcie klawisza powoduje wyjście z trybu					
	edycji.					
	Jeżeli jest wyświetlane podmenu, to naciśnięcie klawisza powoduje powrót do					
	menu.					
	Jeżeli jest wyświetlane menu lub ekrany pomiędzy ekranem podstawowym a					
	menu, to naciśnięcie klawisza pododuje wyświetlenie ekranu podstawowego.					
	Jeżeli jest wyświetlane menu wyboru trybu pracy, to naciśnięcie klawisza "ESC"					
	powoduje wyświetlenie ekranu podstawowego.					
\sim	Poruszanie się w górę menu. W trybie edycji zwiększanie nastawianej wartości.					
\checkmark	Poruszanie się w dół menu. W trybie edycji zmniejszanie nastawianej wartości.					
. 1	Jeżeli wyświetlany jest ekran podstawowy, to naciśnięcie tego klawisza powoduje					
—	przejście w tryb nastawiania temperatury zadanej.					
	Jeżeli wyświetlane jest MENU, to naciśnięcie tego klawisza powoduje przejśćie do					
	podmenu.					
	Jeżeli wyświetlane jest podmenu to naciśnięcie tego klawisza powoduje przejście					
	w tryb edycji.					
	Jeżeli jest edytowany parametr, to naciśnięcie klawisza powoduje wyjście z trybu					
lni	edycji. Jeżeli jest wyświetlane podmenu, to naciśnięcie klawisza powoduje powrót					
	do menu. Jeżeli jest wyświetlane menu lub ekrany pomiędzy ekranem					
	podstawowym a menu, to naciśnięcie klawisza pododuje wyświetlenie ekranu					
	podstawowego. Jeżeli jest wyświetlane menu wyboru trybu pracy, to naciśnięcie					
	klawisza "ESC" powoduje wyświetlenie ekranu podstawowego.					

2.3 R470N - znaczenie klawiszy

IESCI	Naciśnięcie tego klawisza kiedy wyświetlany jest ekran główny powoduje					
	wyświetlenie menu wyboru trybu pracy. Ponowne naciśnięcie przywraca wyświetlanie					
	ekranu podstawowego.					
	Jeżeli jest edytowany parametr, to naciśnięcie klawisza "ESC" powoduje wyjście					
	z trybu edycji. Jeżeli jest wyświetlane podmenu, to naciśnięcie klawisza "ESC" powoduje powrót do					
	menu.					
	Jeżeli jest wyświetlane menu lub ekrany pomiędzy ekranem podstawowym a menu,					
	to naciśnięcie klawisza "ESC" pododuje wyświetlenie ekranu podstawowego.					
	Jeżeli jest wyświetlane menu wyboru trybu pracy, to naciśnięcie klawisza "ESC"					
	powoduje wyświetlenie ekranu podstawowego.					
\bigwedge	Poruszanie się w górę menu. W trybie edycji zwiększanie nastawianej wartości.					
\searrow	Poruszanie się w dół menu. W trybie edycji zmniejszanie nastawianej wartości.					
.ENT.	Jeżeli wyświetlany jest ekran podstawowy, to naciśnięcie tego klawisza powoduje					
przejście w tryb nastawiania temperatury zadanej.						
	Jeżeli wyświetlane jest MENU, to naciśnięcie tego klawisza powoduje przejśćie do					
	podmenu.					
	Jeżeli wyświetlane jest podmenu to naciśnięcie tego klawisza powoduje przejście					
	w tryb edycji.					

2.4 Ekran główny

Ekran główny przedstawia pracę podstawowych urządzeń pompy ciepła, oraz temperatury zmierzone i zadane. Wygląd tego ekranu zależy od wybranej konfiguracji i stanu regulatora.

2.4.1 Konfiguracja bez bufora

W konfiguracji bez bufora na głównym ekranie ustawia się temperaturę górnego źródła.

- 1 stan pompy ciepła
- 2 dzień tygodnia
- 3 godzina
- 4 zmierzona temperatura górnego źródła
- 5 ustawiona temperatura górnego źródła
- 6 wyliczona temperatura górnego źródła

7 - konfiguracja pracy obiegu górnego źródła
w tym przypadku linijka godzinowa
z ustawionym programem działania
ogrzewania

8 - stan pracy głównego biwalentnego źródła ciepła.

9 - praca pompy górnego źródła, napis powyżej pokazuje czy ogrzewany jest obieg CO czy CWU.

- 10 praca pompy ciepła
- 11 sygnalizacja zamrożenia dolnego źródła
- 12 symbol aktualnej strefy grzewczej

(księżyc oznacza pracę z obniżeniem, słońce oznacza pracę bez obniżenia)

13 - sygnalizacja pracy pompy lub wentylatora dolnego źródła.

2.4.2 Konfiguracja z buforem

W konfiguracji z buforem na głównym ekranie ustawia się temperaturę zadaną bufora.

- 1 pompa górnego źródła, napis BUF
- oznacza, że ogrzewany jest bufor
- 2 temperatura zmierzona bufora
- 3 temperatura nastawiona bufora
- 4 temperatura wyliczona bufora

2.4.3 Konfiguracja z dołączaniem kotła pomocniczego

W tej konfiguracji na głównym ekranie można ustawić temperaturę wyższą niż maksymalna temperatura górnego źródła, wtedy regulator wyłącza pracę pompy ciepła a załącza kocioł pomocniczy. Kocioł pomocniczy może zostać załączony również jeżeli z jakiegokolwiek powodu pompa ciepła nie będzie mogła pracować.

1 - sygnalizacja załączenia kotła pomocniczego

2 - temperatura zadana wyższa niż od maksymalnej temperatury górnego źródła

2.5 Ustawianie temperatury zadanej pompy ciepła / bufora

Temperaturę zadaną ustawia się na głównym ekranie o ile pompa ciepła nie pracuje pogodowo (parametr MENU/Ogrzewanie/Praca pogodowa C.O. = NIE).

Należy przycisnąć klawisz [ENT] / -, temperatura zadana zostanie podświetlona.

Następnie za pomoca klawiszy 💙 i 🦯 należy zmienić nastawę. Po ustawieniu

właściwej wartości przycisnąć klawisz $IENTI / \leftarrow Iub IESCI / O$. Co może wpłynąć na to, że temperatura wyliczona jest inna niż zadana?

- 1. Obniżenie wprowadzone przez tryb z zegarem.
- 2. Obniżenie wprowadzone przez termostat lub NANO.
- 3. Wymuszenie przez obwód mieszacza wyższej temperatury.
- 4. Ładowanie ciepłej wody użytkowej może podnieść temperaturę utrzymywaną do wartości wymaganej do podgrzania zasobnika.
- 5. Wyjście z sezonu grzewczego.

Temperatura wyliczona jest równa zadanej jeżeli żaden z powyższych przypadków nie zachodzi.

2.6 Wykres zmian temperatury zewnętrznej

W oknie temperatury zewnętrznej można odczytać aktualną temperaturę zewnętrzną oraz zobaczyć wykres zmian temperatury zewnętrznej za ostatnie 24 godziny.

Linia ciągła na osi czasu oznacza temperaturę 0°C. Liniami przerywanymi są zaznaczone temperatury -10°C i +10°C. Jeżeli regulator określa koniec sezonu na podstawie temperatury uśrednionej to wartość temperatury uśrednionej jest wyświetlana poniżej temperatury zewnętrznej.

2.7 Mieszacz 1 - ekran i ustawianie

Ekran mieszacza jest wyświetlany jeżeli obsługa mieszacza jest włączona w parametrze serwisowym MENU/SERWIS/Mieszacze i CWU/Czy jest mieszacz 1 ? = TAK

Temperaturę zadaną mieszacza ustawia się w oknie przedstawionym w poprzednim rozdziale. Nie można ustawiać temperatury zadanej mieszacza kiedy mieszacz pracuje pogodowo (parametr MENU/Ogrzewanie/Praca pogodowa = TAK). Należy przycisnąć klawisz \underbrace{ENT} / $\xleftarrow{}$, temperatura zadana zostanie podświetlona. Następnie za pomoca klawiszy $\swarrow{}$ i $\swarrow{}$ należy zmienić nastawę. Po ustawieniu właściwej wartości przycisnąć klawisz \underbrace{ENT} / $\xleftarrow{}$ lub \underbrace{ESC} / .

2.8 Mieszacz 2 - ekran i ustawianie

Ekran mieszacza 2 wygląda tak samo jak ekran mieszacza 1, ustawianie mieszacza 2 jest także identyczne jak mieszacza 1.

2.9 Ekran CWU

Ekran mieszacza jest wyświetlany jeżeli obsługa CWU jest włączona w parametrze serwisowym MENU/SERWIS/Mieszacze i CWU/Czy jest CWU ?

- 1 nazwa obwodu
- 2 dzień tygodnia
- 3 godzina
- 4 temperatura wody w zasobniku CWU
- 5 temperatura zadana

6 - temperatura wyliczona

7- konfiguracja pracy CWU, w tym przypadku praca komfort (bez obniżeń).

- 8 pompa ładująca zasobnik CWU
- 9 pompa cyrkulacyjna

2.9.1 Ustawianie temperatury zadanej CWU

Należy przycisnąć klawisz 📕 / ᠲ , temperatura zadana zostanie podświetlona.
Następnie za pomoca klawiszy 💙 i 🔨 należy zmienić nastawę. Po ustawieniu
właściwej wartości przycisnąć klawisz IENTI / 🖵 lub IESCI / 🖒.

3 Menu

Podczas normalnej pracy termostatu na ekranie wyświetlana jest strona główna. Po naciśnięciu przycisku MENU użytkownik przechodzi do poszczególnych funkcji sterownika. Struktura menu jest przedstawiona na poniższym rysunku:

3.1 Off/auto/eko

W tej funkcji użytkownik wybiera sposób w jaki będzie pracowała pompa ciepła. Żeby wybrać

opcję należy ją zaznaczyć za pomocą klawiszy V i A a następnie zatwierdzić

naciskając klawisz **ENTER**.

Do wyboru są 3 opcje:

- Off oznacza, że pompa ciepała jest wyłączona.
- auto oznacza, że regulator steruje sprężarką i grzałką biwal.
- eko oznacza, że regulator nie załącza grzałki biwal.

3.2 Zima/Lato/Chłodzenie

W tej funkcji uzytkownik wybiera sposób w jaki będzie pracowała instalacja.

Do wyboru są 3 opcje:

- zima
- lato
- lato chłodzenie

3.3 Ogrzewanie

W podmenu Ogrzewanie zostały zgrupowane nastawy obiegu C.O.

3.3.1 Praca C.O.

Pozwala ustawić źródło obniżeń oraz wyłączyć obwód. Można wybrać jedną z następujących opcji.

- Obwód wyłączony
- Stała temperatura
- Praca z zegarem
- Z termostatem
- Praca z nano nr 1
- Praca z nano nr 2
- Praca z nano nr 3
- Praca z nano nr 4
- Praca z nano nr 5

3.3.2 Obniżenie C.O.

Jest to wartość o jaką zostanie zmniejszona temperatura utrzymywana ogrzewania poza strefami zegara i po zadziałaniu termostatu pokojowego lub NANO.

3.3.3 Wyłącz. Termostatem

Wyłączanie pompy C.O. termostatem.

Wyjaśnienie znaczenia parametru znajduje się w rozdziale 4.2 na stronie 29.

3.3.4 Praca pogodowa C.O.

- NIE temperatura zadana jest ustawiana na ekranie ustawiania temperatury ogrzewania
- TAK temperatura zadana ogrzewania jest wyznaczana na podstawie charakterystyki pogodowej i zmierzonej temperatury zewnętrznej.

3.3.5 Charakterystyka pog.

Ustawianie charakterystyki pogodowej. Kształtuje się ją ustawiając temperatury zadane przy temperaturze zewnętrznej +10, 0, -10, -20°C. Parametr EKO oznacza temperaturę zewnętrzną powyżej której regulator wyłącza ogrzewanie.

	KRZYWA	GRZEWCZA
EKO	15°	
+10	27°	80-
0	32°	60 un
-10	34°	20-
-20	37°	-20 0 20-

3.3.6 Harmonogram

Ustawia się harmonogramy dla dni roboczych (poniedziałek-piątek), soboty i niedzieli.

Można ustawić 2 strefy grzania, pomiędzy strefami grzania jest strefa obniżenia. W strefie obniżenia regulator utrzymuje temperaturę obniżoną o wartość korekty ustawionej w parametrze **MENU/Ogrzewanie/Obniżenie C.O.**

3.4 CWU

W podmenu CWU zostały zgrupowane nastawy obiegu CWU

3.4.1 Tryb pracy

Można wybrać jedną z 3 opcji:

- Obwód wyłączony
- Praca komfort
- Praca z zegarem

3.4.2 Obniżenie

Wartość o jaką zostanie obniżona temperatura utrzymywana w strefach obniżenia przy pracy z zegarem.

3.4.3 Harmonogram

Ustawia się harmonogramy dla dni roboczych (poniedziałek-piątek), soboty i niedzieli.

Można ustawić 2 strefy grzania, pomiędzy strefami grzania jest strefa obniżenia. W strefie obniżenia regulator utrzymuje temperaturę obniżoną o wartość korekty ustawionej w parametrze **MENU/CWU/Obniżenie**.

3.4.4 Cyrkulacja

Pompa cyrkulacji CWU jest sterowana z oddzielnego modułu rozszerzającego np: R803BB lub H2. Podmenu cyrkulacja zawiera 3 nastawy:

3.4.4.1 Tryb pracy

- Obwód wyłączony
- Praca komfort oznacza, że cyrkulacja jest aktywna cały czas,
- **Praca z zegarem** oznacza, że cyrkulacja jest aktywna tylko w ustawionych strefach zegara dla CWU

3.4.4.2 Czas pracy

Czas pracy pompy cyrkulacyjnej.

3.4.4.3 Czas przerwy

Czas przerwy pompy cyrkulacyjnej.

3.5 Mieszacz 1

3.5.1 Praca mieszacza

Pozwala ustawić źródło obniżeń oraz wyłączyć obwód. Można wybrać jedną z następujących opcji:

- Obwód wyłączony
- Stała temperatura
- Praca z zegarem
- Z termostatem
- Praca z nano nr 1
- Praca z nano nr 2
- Praca z nano nr 3
- Praca z nano nr 4
- Praca z nano nr 5

Uwaga! Do obsługi NANO+ o adresach większych niż 2 wymagany jest dodatkowy moduł sterujący siecią.

3.5.2 Wyłącz. termostatem

Pozwolenie na wyłączanie pompy mieszacza termostatem.

3.5.3 Praca pogodowa

- NIE temperatura zadana jest ustawiana na ekranie ustawiania temperatury ogrzewania
- TAK temperatura zadana ogrzewania jest wyznaczana na podstawie charakterystyki pogodowej i zmierzonej temperatury zewnętrznej.

3.5.4 Charakterystyka pogodowa

Ustawianie charakterystyki pogodowej. Kształtuje się ją ustawiając temperatury zadane przy temperaturze zewnętrznej +10, 0, -10, -20°C. Parametr EKO oznacza temperaturę zewnętrzną powyżej której regulator wyłącza ogrzewanie.

	KRZYWA	GRZEWCZA
EKO	15°	
+10	27°	80-
0	32°	60 un
-10	34°	-05
-20	37°	-20 0 20

3.5.5 Harmonogram

Ustawia się harmonogramy dla dni roboczych (poniedziałek-piątek), soboty i niedzieli. Można ustawić 2 strefy grzania, pomiędzy strefami grzania jest strefa obniżenia. W strefie obniżenia regulator utrzymuje temperaturę obniżoną o wartość korekty ustawionej w parametrze **MENU/Mieszacz 1/Obniżenie**.

3.6 Mieszacz 2

Mieszacz 2 ma taką samą listę nastaw co mieszacz 1.

3.7 Ustawienia

3.7.1 Data i czas

Kolejne naciśnięcia klawisza **ENT** przełączają pomiędzy ustawianiem godziny, minuty, dnia miesiąca, miesiąca i roku. Menu nastaw zegara można opuścić naciskając klawisz **ESC**. **Uwaga! Po podłączeniu NANO o adresie 1 czas jest** synchronizowany z NANO.

3.7.2 Sygnał awarii

Pozwolenie na sygnalizowanie awarii przerywanym sygnałem akustycznym.

3.7.3 Sygnał klawiatury

Ustawianie głośności sygnału akustycznego klawiatury.

Instrukcja obsługi regulatora R470 u5.x, wydanie 3

3.7.4 Kontrast

Ustawianie kontrastu wyświetlacza.

3.8 SERWIS

Kod serwisowy zabezpiecza przed nieuprawnionymi modyfikacjami ważnych nastaw regulatora. Podanie właściwego kodu umożliwia przeglądanie i modyfikacje opisanych poniżej nastaw. Struktura menu serwisowego jest przedstawiona na rysunku:

SERWIS			
USTAW KODSERWISOWY			
0000			

Instrukcja obsługi regulatora R470 u5.x, wydanie 3

3.9 TEST

I.TEST USTAW KOD TESTOWY 0000

I.TEST	
POMPA CO	0
POMPA CWU	0
POMPA CYRKULACJI	0
MIESZACZ 1	0
MIESZACZ 2	0
BIWAL CWU	0

Żeby przejść do testu trzeba ustawić TRYB PRACY P.C. = WYŁĄCZENIE, oraz ustawić kod testowy 5511.

Przełączenie stanu wyjścia następuje po naciśnięciu klawisza **[ENT]**. Zamalowane kółko oznacza załączenie. Pompa cyrkulacji wymaga podłączenia oddzielnego modułu. Mieszacz 1 i 2 wymaga podłączenia i skonfigurowania odpowiednich modułów R803BB. W przypadku mieszaczy naciskając kolejno klawisz **[ENT]** załącza się pompa mieszacza, zawór mieszacza w kierunku otwieranie, zawór mieszacza w kierunku zamykanie.

3.10 Rejestr zdarzeń

Zawiera listę zdarzeń wraz z godziną i datą wystąpienia. Regulator umożliwia zarejestrowanie 50 zdarzeń.

3.11 Liczniki

PRACA SPR - licznik czasu pracy sprężarki PRACA BCW - licznik czasu pracy źródła biwalentnego dla CWU PRACA BCO - licznik czasu pracy źródła biwalentnego dla CO.

3.12 Liczniki SPR

PRACA SPR - licznik czasu pracy sprężarki

ZAŁĄCZEŃ SUMA - licznik załączeń sprężarki

ZAŁĄCZEŃ DZIS - licznik załączeń sprężarki w bierzącym dniu

ZAŁĄCZEŃ WCZO. Licznik załączeń sprężarki w dniu poprzednim

ZAŁĄCZEŃ P.WCZ. - licznik załączeń sprężarki przedwczoraj.

4 Działanie regulatora

4.1 Sterowanie pracą pompy ciepła

Jeżeli temperatura górnego źródła jest mniejsza od wyliczonej z krzywej grzania wartości zadanej, regulator załącza pompę ciepła do ruchu. Uruchamiana jest pompa dolnego źródła (wentylator), a po czasie **MENU / Serwis / Technologia PC / Zwłoka zał. SPR** uruchamiana jest sprężarka. Aby regulator mógł uruchomić sprężarkę, muszą być dodatkowo spełnione następujące warunki:

- brak sygnału awarii od presostatów
- temperatura dolnego źródła jest wyższa od wartości MENU / Serwis / Technologia PC

/ Temperatura załączenia PDZ

Cykl grzania kończy się, jeżeli:

- zostanie osiągnięta temperatura zadana górnego źródła
- dolne źródło zostanie wychłodzone i jego temperatura spadnie poniżej wartości MENU / Serwis / Technologia PC / Temperatura wyłączenia PDZ
- pojawi się sygnał awarii od presostatu.

Zostaje wyłączona sprężarka, a po czasie MENU / SERWIS / Technologia PC / Zwłoka wył. PDZ wyłączana jest pompa dolnego źródła. Aby sprężarka mogła zostać ponownie uruchomiona, musi upłynąć czas MENU / Serwis / Technologia PC / Min czas wył SPR i muszą zostać spełnione wszystkie warunki załączenia.

Jeżeli nastąpi przegrzanie górnego źródła, regulator wyłącza sprężarkę a po upływie czasu G.34 MENU / Serwis / Technologia PC / Zwłoka wył. PDZ wyłączana jest pompa dolnego źródła. Jeżeli jest sezon grzewczy (Tzewn > Tzewn. wyłączenia) to pracuje ostatnio załączona pompa (CO lub CWU) do momentu, kiedy temperatura górnego źródła nie spadnie poniżej wartości maksymalnej. Poza sezonem przegrzanie górnego źródła utrzymuje w ruchu pompę CWU przez czas postoju minimalnego. Jeżeli zostanie wychłodzone dolne źródło, wyłączana jest sprężarka a pracuje pompa dolnego źródła.

4.2 Sterowanie pompą C.O. (pompą górnego źródła)

Sterowanie pompą C.O. (pompą górnego źródła) zależy parametru MENU / Serwis / Obieg ogrzewania Poniżej znajdują się tabele przedstawiające szczegółówo sposób sterowania pompą dla każdego typu obiegu ogrzewania i konfiguracj obiegu ogrzewania (parametry MENU / Ogrzewanie / Praca C.O. i MENU / Ogrzewanie / Wyłącz termostatem).

Wartość 1 oznacza załączenie pompy.

Wartość 0 oznacza wyłączenie pompy

Symbol LTLT oznacza pracę przerywaną pompy C.O. Czasy określone są parametrami G.24 i G.25.

4.2.1 MENU / Serwis / Obieg ogrzewania = PODŁOGA

Regulator utrzymuję zadaną temperaturę powrotu.

MENU /	STAN TERMOSTATU	MENU /	T.pow < zadanej	T.pow > zadanej
Ogrzewanie /		Ogrzewanie /		
Praca C.O.		Wyłącz		
		termostatem		
Z TERMOSTATEM	Grzać	Nie dotyczy	1	1
lub Z NANO	Nie grzać	ТАК	0	0
		NIE	1	
STAŁA	Nie dotyczy	Nie dotyczy	1	
TEMPERATURA				
PRACA Z ZEGAREM	Nie dotyczy	Nie dotyczy	1	பா

4.2.2 MENU / Serwis / Obieg ogrzewania = BUFOR

Regulator utrzymuje zadaną temperaturę bufora.

MENU /	STAN TERMOSTATU	MENU /	T.buf < zadanej	T.buf > zadanej
Ogrzewanie /		Ogrzewanie /		i
Praca C.O.		Wyłącz		T.pow > zadanej
		termostatem		
Z TERMOSTATEM	Grzać	Nie dotyczy	1	0
lub Z NANO	Nie grzać	ТАК	1	0
		NIE	1	0
STAŁA	Nie dotyczy	Nie dotyczy	1	0
TEMPERATURA				
PRACA Z ZEGAREM	Nie dotyczy	Nie dotyczy	1	0

4.2.3 MENU / Serwis / Obieg ogrzewania = GRZEJNIKI

Regulator utrzymuje zadaną temperaturę górnego źródła.

MENU /	STAN TERMOSTATU	MENU /	T.gz < zadanej	T.gz > zadanej
Ogrzewanie /		Ogrzewanie /		
Praca C.O.		Wyłącz		
		termostatem		
Z TERMOSTATEM	Grzać	Nie dotyczy	1	1
lub Z NANO	Nie grzać	ТАК	0	0
		NIE	1	1
STAŁA	Nie dotyczy	Nie dotyczy	1	1
TEMPERATURA				
PRACA Z ZEGAREM	Nie dotyczy	Nie dotyczy	1	1

4.3 Praca pogodowa

Jeżeli do regulatora jest podłączony czujnik temperatury zewnętrznej lub temperatura zewnętrzna jest mierzona czujnikiem temperatury dolnego źródła w pompie powietrznej i parametr **A.04 MENU / Ogrzewanie / Praca pogodowa C.O. = TAK**, to temperatura zadana jest wyznaczana na podstawie krzywej grzewczej i pomiaru temperatury zewnętrznej. Krzywą grzewczą ustawia się w **MENU / Ogrzewanie / Charakterystyka pogodowa**. Kształtuje się ją ustawiając parametry opisane poniżej:

- **EKO** przekroczenie tej temperatury powoduje wyłączenie posezonowe.
- **+10** temperatura zadana przy temperaturze zewnętrznej +10°C,
- 0 temperatura zadana przy temperaturze zewnętrznej 0°C,
- -10 temperatura zadana przy temperaturze zewnętrznej -10°C,
- -20 temperatura zadana przy temperaturze zewnętrznej -20°C.

Jeżeli zmierzona temperatura zewnętrzna jest pomiędzy tymi punktami, to regulator sam wylicza temperaturę zadaną obiegu CO na podstawie wartości dwóch najbliższych punktów. Np. temperatura zewnętrzna wynosi -5°C, zaprogramowana wartość krzywej dla Tzew 0 = 40°C a dla Tzew -10 = 50°C, to regulator wyznaczy temperaturę zadaną CO na 45°C.

Ilustracja 8: Krzywa grzewcza - przykładowe dane.

5 Montaż i instalacja

5.1 Informacje ogólne

Prace przyłączeniowe i montaż powinny być wykonane wyłącznie przez osoby z odpowiednimi kwalifikacjami i uprawnieniami, zgodnie z obowiązującymi przepisami i normami. Wszelkie prace przyłączeniowe mogą się odbywać tylko przy odłączonym napięciu zasilania, należy upewnić się, że przewody elektryczne nie są pod napięciem. W regulatorze zastosowano odłączenie elektroniczne podłączonych urządzeń (działanie typu 2Y zgodnie z PN-EN 60730-1) które nie zapewnia bezpiecznego odłączenia.

Regulator składa się z modułu wykonawczego i panelu sterującego. Moduł wykonawczy jest przeznaczony do wbudowania, nie może być stosowany jako urządzenie wolnostojące. Panel sterujący R470 one w obudowie naściennej należy zamontowac w pomieszczeniu mieszkalnym lub podobnym, panel R470p jest przeznaczony do zabudowy w obudowie pompy ciepła. Połączenie pomiędzy panelem sterującym a modułem wykonawczym wymaga przewodu czterożyłowego. Średnica żył nie powinna być mniejsza niż 0.25mm².

5.2 Czujniki i ich montaż

Regulator do pomiarów używa następujących typów czujników:

- temperatura górnego źródła czujnik T1001
- temperatura dolnego źródła czujnik T1001
- temperatura CWU czujnik T1001
- temperatura zewnętrzna czujnik T1002
- temperatura powrotu czujnik T1001
- temperatura freonu czujnik T1001

- temperatura bufora - czujnik T1001

Czujniki T1001 składają się z elementu pomiarowego umieszczonego w osłonie ze stali nierdzewnej o średnicy 6mm i przewodu odpornego na działanie temperatury do 100°C. Czujnik można przedłużać przewodem o przekroju nie mniejszym niż 0,5mm², całkowita długość przewodu nie powinna przekraczać 30m. Czujniki nie są hermetyczne, dlatego zabrania się zanurzania ich w jakichkolwiek cieczach. Przewody czujników nie mogą stykać się z powierzchniami, których temperatura może być wyższa niż 100°C. Minimalna odległość pomiędzy przewodami czujników a równolegle biegnącymi przewodami pod napięciem sieci wynosi 30cm. Mniejsza odległość może powodować brak stabilności odczytów temperatur.

Temperatura	Rezystancja	Temperatura	Rezystancja
[°C]	[Ω]	[°C]	[Ω]
-40	842,1	30	1116,7
-30	881,7	40	1155,4
-20	921,3	50	1194
-10	960,7	60	1232,4
0	1000	70	1270,7
10	1039	80	1308,9
20	1077,9	90	1347

Tabela 1: Wartości rezystancji czujników T1001, T1002, T1006, 1401 dla wybranych temperatur

5.3 Moduł wykonawczy R470 E8

Moduł wykonawczy posiada klasę ochronności IP20, nie może być użytkowany bez dodatkowej obudowy. Jest przystosowany do montażu na szynie DIN TS35, może być zabudowany w standardowej szafce elektroinstalacyjnej o szerokości 8 modułów lub w innej obudowie zapewniającej odpowiedni stopień ochrony przed wpływem środowiska i dostępem do części znajdujących się pod niebezpiecznym napięciem.

Regulator należy zasilić z instalacji elektrycznej o napięciu 230V/50Hz. Instalacja powinna być trójprzewodowa, zabezpieczona wyłącznikiem różnicowoprądowym oraz bezpiecznikiem nadprądowym o wartości dobranej do obciążenia i przekrojów przewodów. Przewody przyłączeniowe należy poprowadzić w taki sposób, aby nie stykały się z powierzchniami o temperaturze przekraczającej ich nominalną temperaturę pracy. Końcówki żył przewodów należy zabezpieczyć tulejkami zaciskowymi. Zaciski śrubowe regulatora umożliwiają podłączenie przewodu o przekroju maksymalnym 1,5mm².

Regulator R470 nie posiada złącza uziemiającego. Należy zapewnić odpowiednie złącze uziemiające przeznaczone do podłączenia żył ochronnych przewodu zasilającego i przewodów podłączonych do odbiorników

Ilustracja 9: Podłączenie urządzeń wykonawczych - przykład. Jeśli odbiorniki są trójfazowe lub ich moc przekracza dopuszczalny poziom, należy zastosować styczniki.

Ilustracja 10: Podłączenie czujników i ukladów wejściowych - przykład. <u>Na wejścia od 20 do 49</u> <u>nie wolno podawać żadnego napięcia. Przyłączenie napięcia sieci do tych zacisków</u> <u>powoduje uszkodzenie regualtora i zagraża zdrowiu i życiu użytkownika !</u>

Ilustracja 11: Podłączenie panelu R470 one

Ilustracja 12: Podłączenie panelu R470p / R470n

Ilustracja 13: Wymiary obudowy modułu wykonawczego

Temperatura otoczenia modułu wykonawczego nie może przekraczać zakresu 0-55°C. Przestrzeń potrzebna dla modułu wykonawczego jest przedstawiona na ilustracji 13.

Aby zamocować moduł wykonawczy na szynie, należy;

- 1. odciągnąć dolne zaczepy,
- 2. zawiesić moduł na górnych zaczepach,
- 3. wcisnąć dolne zaczepy tak aby zaskoczyły za krawędź szyny,
- 4. upewnić się, że urządzenie jest zamocowane pewnie i nie można go zdjąć bez użycia narzędzia.

5.4 Panel sterujący R470p

Panel sterujący przeznaczony jest do zamontowania w obudowie pompy ciepła

Rysunek 1: wymiary panelu sterującego regulatora w wersji **R470 p**

Rysunek 2: Otwory montażowe panelu **R470 p**

5.5 Panel sterujący R470 one

Panel sterujący przeznaczony jest do zamontowania na ścianie

Rysunek 3: Wymiary panelu sterującego regulatora w wersji **R470 n** (w milimetrach).

Rysunek 4: Najważniejsze wymiary płytki montażowej **R470 n** (w milimetrach).

5.6 Panel sterujący R470n

Panel sterujący przeznaczony jest do zamontowania na ścianie

Rysunek 5: Wymiary panelu sterującego regulatora w wersji R470 n

Rysunek 6: Rozmieszczenie otworów montażowych w wersji R470 n

5.7 Moduł rozszerzający H2

Moduł rozszerzający H2 służy do sterowania wydajnością wentylatora i sprężarki invertorowej oraz do załączania pompy obiegu chłodzącego i pompy cyrkulacyjnej CWU.

Zaciski A,B modułu H2 łączy się z zaciskami A,B modułu wykonawczego R470 E8. Zaciski tak samo oznaczone łączy się ze sobą A-A, B-B.

5.7.1 Schemat wyprowadzeń

AO1 - wyjście 0-10V do sterowania sprężarką invertorową A02 - wyjście 0-10V do sterowania wentylatorem EC 1, 2 - zasilanie 230V, 50Hz

3, 4 - Pk1 przekaźnik cyrkulacji CWU9, 10 - Pk4 przekaźnik pompy obiegu chłodzenia.

G - masa wyjść analogowych

5.7.2 Znaczenie kontrolek

- L1 świeci: tryb chłodzenia
- L2 świeci: jest komunikacja
- L2 mruga: brak komunikacji

5.7.3 Konfiguracja

Wszystkie przełączniki muszą byc ustawione w pozycję OFF jak na rysunku obok.

5.8 Moduł mieszacza R803BB

Moduł mieszacza R803BB steruje napędem mieszacza i pompą obiegową oraz mierzy temperaturę obiegu grzewczego. Komunikuje się z wybranymi regulatorami za pomocą interfejsu cyfrowego RS485 w standardzie C14. Steruje pompą cyrkulacyjną CWU według programu zapisanego w regulatorze nadrzędnym.

5.8.1 Schemat podłączenia

Rysunek 7: Schemat podłączenia modułu R803BB do regulatora R470 one.

Rysunek 8: Schemat podłączenia modułu R803BB do regulatora R470p / R470n.

5.8.2 Konfiguracja regulatora do współpracy z R803BB

Po podłączeniu modułu R803BB należy w parametrze

na TAK.

5.9 Podłączenie NANO one

Rysunek 9: Schemat podłączenia termostatu NANO one do regulatora R470 one.

Rysunek 10: Schemat podłączenia termostatu NANO one do regulatora R470p R470n.

Regulator R470 jest przystosowany do współpracy z termostatem pokojowym NANO obsługującym protokół C14. Na termostacie można ustawić tygodniowy i dobowy program działania ogrzewania. Dodatkowo NANO umożliwia odczyt temperatur; zewnętrznej, górnego źródła i zasobnika CWU, oraz sygnalizuje pojawienie się stanu alarmowego w regulatorze R470. Łatwa zmiana trybów pracy termostatu, pozwala na szybkie dostosowanie pracy obiegu do aktualnych potrzeb użytkownika (praca z zegarem, obniżenie, bez obniżeń, tryb urlopowy).

NANO należy podłączyć za pomocą przewodu 2-żyłowego o przekroju żył od 0,14mm2 do 0,5mm2. Następujące zaciski trzeba połączyć ze sobą: A1-A1, B1-B1 lub A1-A i B1-B. Długość przewodu nie powinna przekraczać 30 m.

Aby wybrany obieg grzewczy współpracował z NANO należy go skonfigurować.

Na przykład dla obiegu bezpośredniego CO należy w parametrze

wybrać z którym NANO ma współpracować.

Po podłączeniu termostatu pokojowego NANO numerze 1, nie można edytować godziny i dnia tygodnia na regulatorze R470 ponieważ ustawianie zegara jest przeniesione do NANO.

6 Dane techniczne

•

Napięcie zasilania:	230V, 50Hz		
Pobór mocy max:	5W		
Stopień ochrony modułu E9:	IP20		
Temperatura otoczenia:	055°C		
Temperatura składowania:	055°C		
Wilgotność względna:	5 - 80% bez kondensacji pary wodnej		
Obciążalność maksymalna wyjść	4(2)A, 370W AC3 na każde wyjście		
Zabezpieczenie modułu E7	Max 0,25A		
Charakterystyka czujników:	Pt1000 w/g DIN EN 60751		
Zakresy pomiarowe:	-39+99°C		
Rozdzielczość pomiaru temperatury:	1°C		
Dokładność pomiaru temperatury:	±1°C		
Przyłącza obwodów 230V~:	Zaciski śrubowe 1,5mm²		
Przyłącza obwodów niskonapięciowych:	Zaciski śrubowe 0,75mm²		
Wyświetlacz:	Graficzny LCD z podświetleniem		
Masa:	1,1 kg		
Interfejs cyfrowy	RS-485		
Protokół komunikacyjny	COMPIT C14		

Kody dostępu:

KOD SERWISOWY: 299

KOD TESTOWY: 5511

